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The high-temperature phase transition in the clathrasil
Dodecasil–3C (17SiO2 · (CH2)4O) has been studied by high-tem-
perature, high-resolution powder diffraction and by following the
temperature evolution of the optical birefringence. The transition
changes the crystal system from cubic to tetragonal at 359(1) K.
A detailed discussion of the symmetry properties of the phase
transition is given. The transition behavior was characterized by
group theoretical considerations as well as in the framework of
Landau theory. The phase transition could be classified as im-
proper ferroelastic and of first order. In addition to the tetragonal
ferroelastic lattice strain, a symmetry-allowed volume reduction
could be observed. ( 1998 Academic Press

INTRODUCTION

Dodecasil—3C (D3C, in short) belongs to the group of
crystalline microporous host structures, which consist of
SiO

4
tetrahedra as main building units and are therefore

called clathrasils (1). In D3C all-corner-connected SiO
4

tetrahedra from pentagon—dodecahedra cages (face symbol
[512]), which are face-connected in such a way that they
build pseudohexagonal nets. A cubic close packing of these
nets results in a second kind of cage, the hexadecahedra
(face symbol [51264]). The cages are 5.7 or 7.5 As , respect-
ively, in free diameter.

Structure-directing template molecules such as pyridine
or trimethylamine are located in the [51264] cages, whereas
smaller molecules like CH

4
and atoms like Kr, Xe, and Ar

are usually located in the [512] cages. For the title com-
pound, the template is tetrahydrofurane, (CH

2
)
4
O (THF for

short), which is located in the hexadecahedra cages.
The highest possible symmetry for the D3C topology is

the space group Fd31 m with the unit cell parameter a
0
+

19.4 As (3). While small and spherical templates like CH
4
,

trimethylamine, or noble gases tend to stabilize D3C with
cubic symmetry at room temperature (2), larger molecules
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force the crystallization of D3C structures, which are tetrag-
onal (t—butylamine) or orthorhombic (pyrrolidine) at ambi-
ent conditions (8).

D3C with trimethylamine as template has been described
in Fd31 (4). The space group Fd31 m has been given for detem-
plated D3C (5). For the guest molecule pyridine, the D3C
structure was described in the tetragonal space group I41 2d
(6), whereas for pyrrolidine Fddd (8) and for tert-butylamine
I4

1
/a (8) have been determined. D3C with the guest mole-

cule THF (D3C-THF) has space group I4
1
/a at room tem-

perature, with unit cell parameters a"13.684(2) and c"
19.482(3) As (9).

D3C shows a series of temperature-induced phase
transitions. Könnecke and Fuess (8) gave the following
summary of the already observed phases:

low-temperature 2
`+223 K

low-temperature 1
` 271—253 K

room-temperature phase
` 453—353 K

cubic high-temperature

The reported transition temperatures vary in dependence
on the size of the molecule and possibly show hysteresis
effects. Reversible phase transitions were reported for D3C-
THF at temperatures 370 and 260 K and near room temper-
ature from differential scanning calorimetry (DSC) and 29Si
magic angle spinning nuclear magnetic resonance (29Si—
MAS—NMR) (10). The high-temperature transition could
be assigned to a tetragonal/cubic transition, which was
confirmed by high-temperature powder diffraction. The cell
parameters of the tetragonal I-centered cell are related to
the cell parameters of the F-centered cubic cell by
a
t
+J2/2 ) a

c
and c

t
+c

c
with the indices c and t refering to

the cubic and tetragonal cell, respectively. A low-temper-
ature synchrotron powder diffraction and NMR study (11)
showed the existence of monoclinic (proposed space group
0022-4596/98 $25.00
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FIG. 1. Birefringence at the cubic/tetragonal transition in D3C-
THF as function of temperature. The curve corresponds to the fit of
Eq. [1].
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C2/m) and orthorhombic (proposed space group Imma)
phases for D3C-THF.

The purpose of the present paper is to provide a more
quantitative description of the cubic/tetragonal phase
transition.

EXPERIMENTAL

Crystals were grown hydrothermally in quartz glass tubes
(2). For optical experiments, an octahedrally shaped, color-
less crystal of +500 lm diameter was selected and oriented
along one of the pseudocubic S100T axes by X-ray oscilla-
tion photographs. The crystal was embedded, ground and
polished to optical quality, together with a quartz crystal for
the determination of sample thickness d (12). We measured
the temperature dependence of the optical birefringence,
applying a LEITZ heating stage. It was adapted to a ZEISS
microscope-spectrometer UMSP80. The temperature was
measured by a built-in Pt/PtRh thermocouple approxim-
ately 5 mm apart from the sample. The temperature was
regulated using an EUROTHERM temperature controller.
We noticed an offset between thermocouple and sample
temperatures of about 10($5) K. The data were corrected
correspondingly. For the determination of the path differ-
ence !, an Ehringhaus type 2j compensator was used for
polychromatic ‘white’ light. The compensation of the path
difference was performed 10 times for each direction and
averaged, in order to improve statistics. The optical birefrin-
gence n was determined from n"!/d with a resulting error
*n"(*!#(!/d)*d)/d.

High-resolution powder diffraction data were collected
employing a Guinier type powder diffractometer (HUBER
G645) with CuKa

1
radiation (j"1.54051 As ). The resolu-

tion of the instrument was 0.04°h, determined at the Si(111)
reflection. Diffraction patterns were collected with a step
width of 0.005° and a counting time of 10 s per step. The
instrument was equipped with a closed-cycle He refrigerator
(CTI Cryogenics) and controlled by a Hewlett Packard
microcomputer and a Lakeshore temperature controller. It
allowed measurements in the range from 12 to 375 K. The
temperature stability was about 0.1 K and the absolute
temperature was correct within 2 K (13). The measurements
were performed in the range 330—375 K in steps of 1 K.
Crystals of D3C-THF were ground in an agate mortar and
mixed with a small amount of Si as an internal standard.
The powder was prepared between Mylar foil and fixed on
a standard sample holder.

The Bragg peak positions and profile parameters were
determined using the program PRO-FIT (14). The highly
asymmetric peak profiles were modelled by a split-type
pseudoVoigt function. The symmetric pseudoVoigt function
P (x) allows the refinement of a mixing parameter g, deter-
mining the fraction of Lorentzian ¸(x) and Gaussian G(x)
components needed to fit the profile P (x)"g¸(x)#
(1!g)G (x). The split-type function consists of two func-
tions, which are defined at the low-angle side of the peak
maximum position P(x)

L
and the high-angle side P(x)

H
,

respectively. Highly asymmetric peaks can be modelled by
the use of two different peak half widths, H

L
and H

H
, and

the mixing parameters g
L
and g

H
, respectively. The resulting

full width at half maximum (FWHM) is given by H
L
#H

H
.

For the present data analysis we applied the constraint
g
L
"g

H
"g.

RESULTS AND DISCUSSION

Optics

The thickness of the crystal plate is 390(1) lm. We deter-
mined the temperature dependence of the optical birefrin-
gence. Above 360 K, the sample is optically isotropic and
therefore of cubic symmetry. From Fig. 1, it follows that the
birefringence decreases almost continuously to zero with
increasing temperature. For continuous transitions the tem-
perature evolution of the excess property can often be de-
scribed by a simple power law

(¹
c
!¹ )b . [1]

This equation was fitted to the data, resulting in the expo-
nent b"0.43(1) and the transition temperature ¹

c
"

359(1) K.



FIG. 3. Temperature evolution of the cell parameters at the cubic/
tetragonal transition in D3C-THF. The straight line corresponds to the
extrapolated cubic cell parameter into the tetragonal phase; the dotted line
is the idea value according to Eq. [2].
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X-ray Diffraction

We followed the position of the cubic 004 reflection,
which is split in the room temperature phase into the tetrag-
onal 004 and 220 reflections (Fig. 2). The intensity ratio
between the two reflections is 1 : 2. This corresponds to the
multiplicity of the pseudocubic (004) and (400/040) lattice
planes. The temperature dependence of the cell parameters
was determined for the cubic 19 As metric of the ‘para’-phase.
Conventional error determination, based on the differenti-
ation of Bragg’s law, results in large errors of the cell
parameters according to the low Bragg angle (2h+18.3°) of
the reflections. Based on the uncertainty in h of the peak fit
(5]10~4), we approximated the relative errors in the cell
parameters and the resulting spontaneous strain to be less
than 7]10~3 and 2]10~4, respectively.

The cell parameters and volume of the unit cell are
plotted in Figs. 3 and 4. The solid straight lines correspond
to the extrapolated cell parameter a

0
, and the volume

»
0
"a3

0
of the cubic phase into the tetragonal phase. The

dotted curve in Fig. 3 shows the values of

a*$
0
"(2a

t
#c

t
)/3, [2]

which would correspond to the extrapolated cell parameter
a
0

of the high-temperature phase for the case of a proper
ferroelastic phase transition. A deviation of a*$

0
from a

0
is

obvious in Fig. 3. This deviation causes a reduction of the
unit cell volume, which is illustrated by the deviation of the
volume from »

0
(Fig. 4). Due to this volume reduction,

the phase transition has to be characterized as improper
FIG. 2. Peak splitting of the cubic (400) reflection (d) into the tetra-
gonal (004) and (220) reflections (s).
ferroelastic. According to Salje (15) the symmetry-adapted
scalar spontaneous strain e is given by

e"SA
c!a

0
a
0
B
2
#2A

a!a
0

a
0
B
2

. [3]
FIG. 4. Temperature evolution of the unit cell volume at the cubic/
tetragonal transition in D3C-THF. The inset shows the temperature evolu-
tion of the excess volume *».



FIG. 5. Plot of total strain e, volume strain e
v
, and pure ferroelastic

strain e
f

vs temperature for the cubic/tetragonal phase transition in D3C-
THF. The solid line corresponds to Eq. [1] with b"0.215.

FIG. 6. Change of the full width a half maximum and the pseudoVoigt
parameter g for the (004) reflection at the cubic/tetragonal phase transition
in D3C-THF.
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Applying the volume strain e
7
given by (16) for the symmet-

rically very similar case of leucite,

e
0
"J3

a
0
!a*$

0
a*$
0

, [4]

the pure ferroelastic strain e
f
"e!e

v
can be determined.

The values of the strain components are given in Fig. 5.
The total spontaneous strain is small (6]10~3 at 330 K).

The ferroelastic strain amounts to nearly twice the volume
strain. The total and the pure ferroelastic strain change
discontinuously to zero at the transition temperature ¹

c
. In

contrast, the volume strain seems to decrease almost con-
tinuously (cf., inset Fig. 4), at least within the accuracy of the
experiment.

The temperature evolution of the peak shape parameters,
namely the full width at half maximum (FWHM) and the
pseudoVoigt parameter g of the pseudocubic 004 reflection,
show an anomaly around ¹

c
(Fig. 6). The FWHM is larger

in the tetragonal room-temperature phase than in the cubic
high-temperature phase. The FWHM increases from both
sides of the transition and shows a discontinuity at ¹

c
.

Symmetry Reduction and Twin Domains

The symmetry reduction at the cubic/tetragonal phase
transition in D3C-THF can be expressed by a group/sub-
group diagram in steps of maximal subgroups (17), as given
in Fig. 7. The tetragonal space groups I4
1
/amd and I4

1
/a

have the same primitive cell as the face-centered cubic cell of
the high-temperature phase. Therefore they are termed
translationengleich. The index 6 of the group/subgroup rela-
tion follows from Fig. 7 and corresponds to the number of
differently oriented twin domains which may be obtained
through the transition (18).

The change of the crystal family comes with a loss of
symmetry elements in the high-temperature ‘para’-phase.
These symmetry elements appear as the twin elements in the
low-temperature ‘ferro’-phase. According to the index 3 at
the Fd31 m—I4

1
/amd transition, corresponding to the change

of the point groups m31 m—4/mmm, three ferroelastic twin
domains can be expected at room temperature with the
threefold axes of the point group m31 m as twin elements.

Further symmetry reduction from 4/mmm to 4/m causes
the loss of either the M100N or the M110N mirror planes of
point group 4/mmm. These planes are part of the holohedry,
i.e., the Laue class of highest symmetry for a given crystal
family. The resulting twins are called merohedral, and the
total number of domains at room temperature is thus six.

Based on the existence of these domains we have to
classify the transition according to Aizu’s notation (19) as
partially ferroelastic. At present, we have no experimental
evidence for the existence of an intermediate phase with



FIG. 7. Group/subgroup diagram for the cubic/tetragonal transition
in D3C-THF.

FIG. 8. Plot of the birefringence n vs squared total strain e2 for the
cubic/tetragonal transition in D3C-THF.
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symmetry I4
1
/amd in D3C-THF. Therefore, we restrict the

following discussion to a direct transition from m31 m to 4/m.

Order Parameter Symmetry

Landau theory, as discussed for instance by Janovec and
coauthors (20), requires the introduction of a quantity called
order parameter (Q). This quantity transforms according to
an irreducible representation of the high-symmetry space
group. If a suitable macroscopic physical property (spon-
taneous strain, polarization) transforms accordingly, the
phase transition may be considered to be driven by the
corresponding tensorial property.

Following (20), the transition m31 m—4/m is characterized
by an order parameter Q, which transforms according to the
three-dimensional ¹

1g irreducible representation of m31 m.
The basis functions for the e

3
unit vector are zN and

(x2!y2)[xy]. This method also yields 3 as the total number
of crystallographic equivalent low-symmetry groups; the
total number of domains is 6. There are no proper compo-
nents of the spontaneous strain. Improper components of
the spontaneous strain are º

1
with u

xx
"u

yy
"!2u

zz
, and

the symmetry-allowed volume distortion dº
c
with du

xx
"

du
yy
"du

zz
. º

1
corresponds to our experimentally deter-

mined ferroelastic strain e
f
, and dº

c
to the volume strain e

v
.

The transition is classified as improper ferroelastic and thus
not driven by the spontaneous strain, which is, however,
a secondary order parameter. The primary order parameter
for this type of transition has been given by Tolédano and
Tolédano (21) and is represented by a fourth rank tensor.
The phase transition is driven by an instability of the elastic
constants c

16
—c

26
. The faintness index of the Fd31 m to I4

1
/a

transition is 2 (21).
The thermodynamic potential ¸ of the transition results
from the common form of the Landau potential for the
three-dimensional order parameter Q(Q

1
, Q

2
, Q

3
) with

¹
1g symmetry (15) and Q

1
"Q

2
"0:

¸"1
2
A(¹!¹

c
)Q2#1

4
bQ4#1

6
cQ6 . [5]

In lowest order, the ferroelastic spontaneous strain couples
linear-quadratically to the order parameter, Q2Je

f
. Ac-

cording to Salje (15), for the excess volume strain e
v

all
coupling terms emQn with m"1 and n the exponents in Eq.
[5] are symmetry-allowed.

Spontaneous strain and optical birefringence are related
to each other by the elasto-optic effect. This proportion has
been worked out in detail for the case of leucite (22). While
eJQ2, the relation for the optical birefringence is nJ(Q2)2.
This can be seen easily from the plot of the squared spontan-
eous strain vs the optical birefringence, which yields an
almost linear relationship (Fig. 8). Thus, an exponent
b+0.11 follows from the proportions given above and
Eq. [1]. Accordingly, the transition has to be classified as
a first order transition. However, first order phase transi-
tions are characterized by a region of coexistence between
high-temperature ‘para’-phase and low-temperature ‘ferro’-
phase. Thus, no exact transition temperature or critical
exponents can be given at all. Nonetheless, the application
of 2b"0.22 in Eq. [1] yields the curve in Fig. 5 for the total
strain, which is in overall good agreement with our experi-
mental data. For a more thorough discussion of the temper-
ature evolution of the strain components, the quality of the
data does not suffice.
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The change of the peak shape parameters as a function of
temperature (cf., Fig. 6) might be related to crystal imperfec-
tions, mainly the occurrence of domain boundaries. A com-
prehensive discussion of the origins of line-profile shapes
and breadths in powder diffraction is given by Delhez et al.
(23). As they point out, mainly crystallite size and strain
broadening can be distinguished. These properties are usu-
ally determined from the Gaussian integral width b

G
and

from the width of the Lorentzian part b
C

of a Voigt peak-
shape function, respectively. As described in the experi-
mental section, the use of a split-type pseudoVoigt function
was necessary for an appropriate description of the peak
shape in our case. The transformation of the full width at
half maximum and the g parameter of the pseudoVoigt
function into the integral widths of the Gaussian and Loren-
tzian part of a corresponding Voigt function was given by de
Keijser et al. (24). The resulting temperature dependence for
the integral width of the pseudoVoigt function bPV is given
in Fig. 9, together with the evolution of the integral widths
for the Lorentzian b

C
and Gaussian b

G
contribution to the

corresponding Voigt function. While strain-broadening is
proportional to b

G
, size-broadening scales with b~1

C
(24).

From b
C

in Fig. 9, it follows that coherently scattering
regions are of equal size in the ‘para’- and ‘ferro’-phase,
while at around 359 K an increase of the integral width
FIG. 9. Temperature dependence of the pseudoVoigt integral breadth
bPV, the Cauchy b

C
, and the Gaussian b

G
contribution of a Voigt function

for the (004) reflection of D3C-THF.
corresponding to a decrease of the crystallite size can be
observed. Strain-broadening at the transition follows from
the slope of the b

G
curve at around 359 K. The difference in

the integral width bPV between ‘ferro’- and ‘para’-phase can
be found for the Gaussian part b

G
as well, and is interpreted

as residual stress in the low-temperature ‘ferro’-phase.
Finally, the above-described symmetry changes at the

cubic/tetragonal phase transition in D3C-THF find their
correspondence in the structural changes through the
transition (9). The action of a one-dimensional local tilt
system violates the symmetry of the ‘para’-phase. The axes
of the tilt system run through the centers of only the Si(5)
tetrahedra and coincide with the 41 inversion axes of the
space group I4

1
/a. A counter-clockwise rotation of these

Si(5) tetrahedra is cooperative only with respect to the next
neighboring tetrahedra. Being one-dimensional, the tilt is
not transferred to the framework as a whole, and therefore
termed local. The transition, governed by this local tilt
system, is connected with the removal of the cubic ( . .m) or
tetragonal (. m . ) mirror planes, respectively. Thus the space
group I4

1
/a is the highest possible symmetry compatible

with that tilt system.
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